§ 63.462 A cover that is used during the working mode is opened only during parts entry and removal. A cover that meets this definition can also be used as an idling-mode cover if that definition is also met. [59 FR 61805, Dec. 2, 1994; 60 FR 29485, June 5, 1995, as amended at 63 FR 24751, May 5, 1998; 64 FR 67798, Dec. 3, 1999] ## §63.462 Batch cold cleaning machine standards. - (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with the requirements specified in paragraph (a)(1) or (a)(2) of this section. - (1) Employ a tightly fitting cover that shall be closed at all times except during parts entry and removal, and a water layer at a minimum thickness of 2.5 centimeters (1.0 inch) on the surface of the solvent within the cleaning machine, or - (2) Employ a tightly fitting cover that shall be closed at all times except during parts entry and removal and a freeboard ratio of 0.75 or greater. - (b) Each owner or operator of a remote-reservoir batch cold solvent cleaning machine shall employ a tightly fitting cover over the solvent sump that shall be closed at all times except during the cleaning of parts. - (c) Each owner or operator of a batch cold solvent cleaning machine complying with paragraph (a)(2) or (b) of this section shall comply with the work and operational practice requirements specified in paragraphs (c)(1) through (c)(9) of this section as applicable. - (1) All waste solvent shall be collected and stored in closed containers. The closed container may contain a device that allows pressure relief, but does not allow liquid solvent to drain from the container. - (2) If a flexible hose or flushing device is used, flushing shall be performed only within the freeboard area of the solvent cleaning machine. - (3) The owner or operator shall drain solvent cleaned parts for 15 seconds or until dripping has stopped, whichever is longer. Parts having cavities or blind holes shall be tipped or rotated while draining. - (4) The owner or operator shall ensure that the solvent level does not exceed the fill line. - (5) Spills during solvent transfer shall be wiped up immediately. The wipe rags shall be stored in covered containers meeting the requirements of paragraph (c)(1) of this section. - (6) When an air- or pump-agitated solvent bath is used, the owner or operator shall ensure that the agitator is operated to produce a rolling motion of the solvent but not observable splashing against tank walls or parts being cleaned. - (7) The owner or operator shall ensure that, when the cover is open, the cold cleaning machine is not exposed to drafts greater than 40 meters per minute (132 feet per minute), as measured between 1 and 2 meters (3.3 and 6.6 feet) upwind and at the same elevation as the tank lip. - (8) Except as provided in paragraph (c)(9) of this section, sponges, fabric, wood, and paper products shall not be cleaned. - (9) The prohibition in paragraph (c)(8) of this section does not apply to the cleaning of porous materials that are part of polychlorinated biphenyl (PCB) laden transformers if those transformers are handled throughout the cleaning process and disposed of in compliance with an approved PCB disposal permit issued in accordance with the Toxic Substances Control Act. - (d) Each owner or operator of a batch cold cleaning machine shall submit an initial notification report as described in §63.468 (a) and (b) and a compliance report as described in §63.468(c). - (e) Each owner or operator subject to the requirements of paragraph (c)(1)through (8) of this section may request to use measures other than those described in these paragraphs. The owner or operator must demonstrate to the Administrator (or delegated State, local, or Tribal authority) that the alternative measures will result in equivalent or better emissions control compared to the measures described in paragraphs (c)(1) through (8) of this section. For example, storing solvent and solvent-laden materials in an enclosed area that is ventilated to a solvent recovery or destruction device ## **Environmental Protection Agency** may be considered an acceptable alternative. [59 FR 61805, Dec. 2, 1994; 60 FR 29485, June 5, 1995, as amended at 64 FR 67799, Dec. 3, 1999; 68 FR 37349, June 23, 2003] ## §63.463 Batch vapor and in-line cleaning machine standards. - (a) Except as provided in §63.464 for all cleaning machines, each owner or operator of a solvent cleaning machine subject to the provisions of this subpart shall ensure that each existing or new batch vapor or in-line solvent cleaning machine subject to the provisions of this subpart conforms to the design requirements specified in paragraphs (a)(1) through (7) of this section. The owner or operator of a continuous web cleaning machine shall comply with the requirements of paragraph (g) or (h) of this section, as appropriate, in lieu of complying with this paragraph. - (1) Each cleaning machine shall be designed or operated to meet the control equipment or technique requirements in paragraph (a)(1)(i) or (a)(1)(ii) of this section. - (i) An idling and downtime mode cover, as described in \$63.463(d)(1)(i), that may be readily opened or closed, that completely covers the cleaning machine openings when in place, and is free of cracks, holes, and other defects. - (ii) A reduced room draft as described in §63.463(e)(2)(ii). - (2) Each cleaning machine shall have a freeboard ratio of 0.75 or greater. - (3) Each cleaning machine shall have an automated parts handling system capable of moving parts or parts baskets at a speed of 3.4 meters per minute (11 feet per minute) or less from the initial loading of parts through removal of cleaned parts. - (4) Each vapor cleaning machine shall be equipped with a device that shuts off the sump heat if the sump liquid solvent level drops to the sump heater coils. This requirement does not apply to a vapor cleaning machine that uses steam to heat the solvent. - (5) Each vapor cleaning machine shall be equipped with a vapor level control device that shuts off sump heat if the vapor level in the vapor cleaning machine rises above the height of the primary condenser. - (6) Each vapor cleaning machine shall have a primary condenser. - (7) Each cleaning machine that uses a lip exhaust shall be designed and operated to route all collected solvent vapors through a properly operated and maintained carbon adsorber that meets the requirements of paragraph (e)(2)(vii) of this section. - (b) Except as provided in §63.464, each owner or operator of an existing or new batch vapor cleaning machine shall comply with either paragraph (b)(1) or (b)(2) of this section. - (1) Each owner or operator of a batch vapor cleaning machine with a solvent/air interface area of 1.21 square meters (13 square feet) or less shall comply with the requirements specified in either paragraph (b)(1)(i) or (b)(1)(ii) of this section. - (i) Employ one of the control combinations listed in table 1 of this subpart or other equivalent methods of control as determined using the procedure in §63.469, equivalent methods of control TABLE 1—CONTROL COMBINATIONS FOR BATCH VAPOR SOLVENT CLEANING MACHINES WITH A SOLVENT/AIR INTERFACE AREA OF 1.21 SQUARE METERS (13 SQUARE FEET) OR LESS | Option | Control combinations | |--------|--| | 1 | Working-mode cover, freeboard ratio of 1.0, superheated vapor. | | 2 | Freeboard refrigeration device, superheated vapor. | | 3 | Working-mode cover, freeboard refrigeration device. | | 4 | Reduced room draft, freeboard ratio of 1.0, superheated vapor. | | 5 | Freeboard refrigeration device, reduced room draft. | | 6 | Freeboard refrigeration device, freeboard ratio of 1.0. | | 7 | Freeboard refrigeration device, dwell. | | 8 | Reduced room draft, dwell, freeboard ratio of 1.0. | | 9 | Freeboard refrigeration device, carbon adsorber. | | 10 | Freeboard ratio of 1.0, superheated vapor, carbon adsorber. | NOTE: Unlike most of the control techniques available for complying with this rule, carbon adsorbers are not considered to be a pollution prevention measure. Use of such units may impose additional cost and burden for a number of reasons. First, carbon adsorption units are generally more expensive than other controls listed in the options. Second, these units may present cross-media impacts such as effluent discharges if not properly operated and maintained, and spent carbon beds have to be disposed of as hazardous waste. When making decisions about what controls to install on halogenated solvent cleaning machines to meet the requirements of this rule, all of these factors should be weighed and pollution prevention measures are encouraged wherever possible.